تخمین میزان رسوب معلق در رودخانه ها با استفاده از شبکه های عصبی مصنوعی

thesis
  • وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان تهران - دانشکده فنی
  • author احسان شماعی
  • adviser علیرضا مردوخ پور
  • publication year 1393
abstract

تخمین صحیح میزان رسوب معلق حمل شده توسط یک رودخانه برای بسیاری از پروژه های منابع آب دارای اهمیت است.همچنین پیش بینی میزان بار رسوب رودخانه نیز موضوعی مهم در مهندسی هیدرولیک است. درتحقیق پیش رو، عملکرد دو نوع از شبکه های عصبی مصنوعی از جمله شبکه mlp و rbf جهت پیش بینی مورد ارزیابی قرار می گیرد وسپس یکبارباهم و یکبار بامنحنی سنجه رسوب مقایسه می شوند. به همین جهت از دبی آب و دبی رسوب رودخانه زاینده رود برای تخمین میزان رسوب معلق استفاده شده است. از شاخص های میانگین مربعات خطا(mse)، ریشه میانگین مربعات خطا(rmse)، ضریب همبستگی r^2 برای ارزیابی عملکرد مدل ها استفاده شد.درپایان با توجه به نتایج اینگونه استنباط می شود که شبکه mlp خروجی بهتری نسبت به شبکه rbf و همچنین منحنی سنجه رسوب دارد.

similar resources

مقایسه روش های شبکه عصبی بیزین و شبکه عصبی مصنوعی در تخمین رسوبات معلق رودخانه ها (مطالعه موردی: سیمینه رود)

زمینه و هدف: شبیه سازی و ارزیابی آورد رسوب رودخانه از جمله مسایل مهم در مدیریت منابع آب می باشد. اندازه گیری مقدار رسوب به روش های متداول عموماً مستلزم صرف وقت و هزینه زیادی بوده و گاهی از دقت کافی نیز برخوردار نمی باشد.  روش بررسی: در این پژوهش تخمین رسوب رودخانه سیمینه رود واقع در استان آذربایجان غربی، با استفاده از شبکه عصبی بیـزین مورد بررسی قرار گرفته و نتایج آن با روش های مرسـوم هوشمند هم...

full text

کاربرد سنجش از دور و شبکه عصبی مصنوعی در تخمین غلظت رسوب معلق رودخانه (مطالعه موردی: رودخانه کارون)

Spectral Reflectance of suspended sediment concentration (SSC) remotely sensed by satellite images is an alternative and economically efficient method to measure SSC in inland waters such as rivers and lakes, coastal waters, and oceans. This paper retrieved SSC from satellite remote sensing imagery using radial basis function networks (RBF). In-situ measurement of SSC, water flow data, as well ...

full text

بررسی کارایی شبکه عصبی مصنوعی در برآورد بار معلق رودخانه با استفاده از داده های دسته‌بندی‌شده

بار رسوب جریان، شاخص مفیدی در پیش‌بینی فرسایش خاک در حوزه‌های آبخیز است؛ بنابراین تدوین مدلی برای برآورد بار رسوب می‌تواند در مدیریت و اجرای پروژه‌های آبخیزداری و مهندسی رودخانه مفید باشد. در این پژوهش روش دسته‌بندی داده‌ها به‌عنوان راه‌کاری برای افزایش دقت شبکه عصبی مصنوعی در تدوین مدل برآورد رسوب معلق بررسی شد. بدین منظور، میزان آورد رسوبات معلق رودخانه‌های خلیفه‌ترخان و چهل‌گزی در حوضۀ قشلاق...

full text

تخمین دبی بار معلق رسوب با استفاده از بهترین ساختار شبکه عصبی مصنوعی در حوزه آبخیز طالقان

  Prediction of sediment load transported by rivers is a crucial step in the management of rivers, reservoirs and hydraulic projects. In the present study, in order to predict the suspended sediment of Taleghan river by using artificial neural network, and recognize the best ANN with the highest accuracy, 500 daily data series of flow discharge on the present day, flow discharge on the past day...

full text

مقایسه میزان کارآیی شبکه عصبی مصنوعی و مدل‌های ‏رگرسیونی، منحنی‌سنجه رسوب در برآورد ‏رسوب معلق روزانه

تعیین میزان فرسایش خاک و بار رسوبی رودخانه عملاً کاری مشکل است؛ بنابراین روش های مختلفی برای آن ها پیشنهاد شده است. یکی از روش های نوین در حل مسائل مهندسی آب و همچنین برآورد رسوب معلق رودخانه ها، استفاده از شبکه عصبی مصنوعی است که با الگو برداری از شبکه مغز انسان، ضمن اجرای فرآیند آموزش، روابط درونی بین داده ها را کشف کرده و به موقعیت های دیگر تعمیم می دهد. هدف از انجام این تحقیق، بررسی کارآیی ر...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان تهران - دانشکده فنی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023